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Airborne transmission is one of the main pathways for the 
transmission of respiratory viruses, including the severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (1). 
Wearing face masks has been widely advocated to mitigate 
transmission. Masks are thought to protect people in two 
ways: source control reducing the emission and spread of res-
piratory viruses through airborne droplets and aerosols, and 
wearer protection reducing the inhalation of airborne respir-
atory viruses. 

The effectiveness of masks, however, is still under debate. 
Compared to N95/FFP2 respirators which have very low par-
ticle penetration rates (around ~5%), surgical and similar 
masks exhibit higher and more variable penetration rates 
(around ~30-70%) (2, 3). Given the large number of particles 
emitted upon respiration and especially upon sneezing or 
coughing (4), the number of respiratory particles that may 
penetrate masks is substantial, which is one of the main rea-
sons leading to doubts about their efficacy in preventing in-
fections. Moreover, randomized clinical trials show 
inconsistent or inconclusive results, with some studies re-
porting only a marginal benefit or no effect of mask use (5, 
6). Thus, surgical and similar masks are often considered to 
be ineffective. On the other hand, observational data show 
that regions or facilities with a higher percentage of the pop-
ulation wearing masks have better control of the coronavirus 

disease 2019 (COVID-19) (7–9). So how to explain these con-
trasting results and apparent inconsistencies? 

Here, we develop a quantitative model of airborne virus 
exposure that can explain these contrasting results and pro-
vide a basis for quantifying the efficacy of face masks. We 
show that mask efficacy strongly depends on airborne virus 
abundance. Based on direct measurements of SARS-CoV-2 in 
air samples and population-level infection probabilities, we 
find that the virus abundance in most environments is suffi-
ciently low for masks to be effective in reducing airborne 
transmission. 

When evaluating the effectiveness of masks, we want to 
understand and quantify their effect on the infection proba-
bility, Pinf. Assuming that every inhaled single virus (virion) 
has the same chance to infect a person, Pinf can be calculated 
by a single-hit model of infection 

( ) v

inf single1 1
N

P P= − −  (1) 

where Psingle represents the infection probability for a single 
virus and Nv represents the total number of viruses to which 
the person is exposed (10). For airborne transmission, the in-
fection probability Pinf for a given time period can be plotted 
as a function of inhaled virus number, Nv. 

Figure 1 illustrates the dependence of Pinf on Nv based on 
the single-hit model (Eq. 1) and scaled by the median infec-
tious dose IDv,50 at which the probability of infection is 50% 
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(10). It shows a highly nonlinear sensitivity of Pinf to changes 
of Nv. Accordingly, the same percentage change of Nv may 
lead to different changes in Pinf depending on the absolute 
level of Nv. In a virus-rich regime, where Nv is much higher 
than IDv,50 (Fig. 1, A and B), Pinf is close to unity and not sen-
sitive to changes of Nv. In this case, wearing a mask may not 
suffice to prevent infection. In a virus-limited regime, where 
Nv is close to or lower than IDv,50, however, Pinf strongly varies 
with Nv, and reducing Nv by wearing a mask will lead to a 
substantial reduction in the infection probability (Fig. 1, C 
and D). Thus, we need to determine the regime of airborne 
virus abundance to understand mask efficacy. 

Respiratory particles, including aerosol particles and 
larger droplets, can carry viruses and are often used to visu-
alize the transmission of airborne viruses (4). Taking a repre-
sentative average of respiratory activity (11), we find that a 
person typically emits a total number of about 3×106 particles 
during a 30 min period (supplementary text, section S1.1). 
This very large number implies that indoor environments are 
usually in a respiratory particle-rich regime. Surgical masks 
with particle collection efficiencies around ~50% cannot pre-
vent the release of millions of particles per person and their 
inhalation by others (green dots in Fig. 1, B and D). In other 
words, the human-emitted respiratory particle number is so 
high that we cannot avoid inhaling particles generated by an-
other person even when wearing a surgical mask. If every res-
piratory particle were to contain one or more viruses, indoor 
environments would often be in a virus-rich regime because 
the median infectious dose IDv,50 for respiratory diseases is 
typically of the order of a few tens to thousands of viruses 
(12–14). 

But does a respiratory particle-rich regime really imply a 
respiratory virus-rich regime? To answer this question, we in-
vestigated characteristic virus distributions in both exhaled 
air samples and indoor air samples including coronaviruses 
(HCoV-NL63, -OC43, -229E and -HKU1), influenza viruses (A 
and B), rhinoviruses and SARS-CoV-2 (supplementary text, 
section S1). We find that usually just a minor fraction of ex-
haled respiratory particles contains viruses. In contrast to the 
high number of emitted respiratory particles, the number of 
viruses in 30-min samples of exhaled air (Nv,30,ex) are typically 
low with mean values around ~53 for coronaviruses (HCoV-
NL63, -OC43, -229E and -HKU1), ~38 for influenza viruses (A 
and B), and ~96 for rhinoviruses (11) (supplementary text, 
section S1.2, and Fig. 2). Figure 2, A and B, shows the infec-
tion probabilities obtained by inserting the number of ex-
haled viruses (Nv,30,ex) for the number of potentially inhaled 
viruses (Nv,30) assuming a characteristic infectious dose of 
IDv,50 = 100 or 1000, respectively (12–14). For SARS-CoV-2 in 
various medical centers, we obtained mean values of Nv,30 in 
the range of ~1 to ~600 (15–18) (supplementary text, section 
S1.3), which correspond to Pinf values in the range of ~0.1% to 

10% for IDv,50 = 1000 and ~1% to 100% for IDv,50 = 100. The 
wide range of Nv,30/ IDv,50 and Pinf values demonstrate that 
both virus-limited and virus-rich conditions can occur in in-
door environments. 

The high variabilities of Nv,30 and Pinf shown in Fig. 2, A 
and B, are consistent with the wide distribution of viral load 
observed in respiratory tract fluids (19) and need to be con-
sidered for estimating population-average infection probabil-
ities, Pinf,pop (supplementary text, section S4). For this purpose, 
we modeled Nv for SARS-CoV-2 as lognormally distributed 
with standard deviations (σ) in the range of ~1 to 2, based on 
recently reported distributions of the viral load of SARS-CoV-
2 in respiratory fluids (19) (supplementary text, section S4). 
As shown in Fig. 2C, the population-average infection proba-
bilities with σ > 0 are higher than in case of uniform exposure 
(σ = 0) in the virus-limited regime at Pinf,pop < ~50%. In other 
words: When the population-average infection probability is 
in the virus-limited regime with Pinf,pop,0 < 0.5 (Fig. 2C), a 
broader distribution (larger σ) implies an increase in the frac-
tion of transmission events under virus-rich conditions (e.g., 
super-spreader events), leading to a reduction of overall mask 
efficacy. 

The basic reproduction number for COVID-19 (R0 ≈ 2-4; 
(20)) can be related to a basic population-average infection 
probability, Pinf,pop,0, through R0 = Pinf,pop,0 · c · d (21). With the 
average duration of infectiousness (d ≈ 10 days), and average 
daily numbers of human contacts (c ≈ 10 to 25 per day) (22, 
23), we obtain estimates in the range of ~0.8% to ~4% for 
Pinf,pop,0, as indicated by the shaded area in Fig. 2C. The low 
levels of Pinf,pop,0 indicate a widespread prevalence of virus-
limited conditions. 

Different regimes of abundance are relevant not only for 
the distinction of respiratory particles and viruses, but also 
for different types of viruses. For example, viruses with 
higher transmissibility, i.e., with higher loads and rates of 
emission/exhalation, greater environmental persistence, or 
lower IDv,50, may result in a virus-rich regime and lead to 
higher basic reproduction numbers as observed for measles 
and other highly infectious diseases. Our analysis shows that 
the levels of Pinf and R0 can vary widely for different viruses. 
This means that aerosol transmission does not necessarily 
lead to a measles-like high R0, and that relatively low values 
of Pinf and R0 do not rule out airborne transmission. Based on 
the scaling with IDv,50, the curves shown in Figs. 1 to 3 can 
easily be applied to assess the efficacy of masks and other 
preventive measures against new and more infectious mu-
tants of SARS-CoV-2 such as B.1.1.7. 

Figure 3 illustrates how the efficacies of surgical masks 
and N95/FFP2 masks vary between virus-limited and virus-
rich conditions when masks are worn only by infectious per-
sons (source control), only by susceptible persons (wearer 
protection), or by all persons (universal masking). In Fig. 3A, 
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the population-average infection probability in case of surgi-
cal mask use (Pinf,pop,mask) is plotted against the infection prob-
ability without masks (Pinf,pop). It shows that surgical masking 
achieves large reductions in infection probability when the 
maskless infection probability is low, but increasingly smaller 
reductions when the maskless infection probability is high. 
Figure 3B shows the corresponding mask efficacy, i.e., the 
percentage reduction of infection probability (ΔPinf,pop/Pinf,pop 
= (Pinf,pop - Pinf,pop,mask)/ Pinf,pop), which decreases slowly with in-
creasing Pinf,pop in the virus-limited regime, exhibits a steep 
decrease upon transition into the virus-rich regime as Pinf,pop 
approaches unity, and goes to zero at Pinf,pop = 1. Figure 3, C 
and D, shows equivalent plots for N95/FFP2 masks. 

Figure 3 illustrates that source control alone is more ef-
fective than wearer protection alone, but that universal mask-
ing is the most effective. This is because masks are more 
effective in removing larger particles (Fig. 4) and freshly gen-
erated respiratory particles are usually largest at the source, 
shrinking upon evaporation in indoor air (20). Note that Fig. 
3 accounts only for airborne transmission of viruses. When 
considering other forms of transmission, the relative im-
portance of source control can be even higher (supplemen-
tary text, section S5) (20). 

The nonlinear dependence of mask efficacy on infection 
risk differs from the assumption that the percentage change 
of infection probability due to mask use would be propor-
tional to the percentage change of inhaled particle number 
(20). Under this assumption, wearing a mask would have the 
same impact on the transmission of a virus disease at any 
level of infection probability. Our analysis, however, shows 
that the efficacy of face masks depends strongly on the level 
of infection probability and virus abundance: masks reduce 
the infection probability by as much as their filter efficiency 
for respiratory particles in the virus-limited regime, but much 
less in the virus-rich regime (Fig. 3). Accordingly, experi-
mental investigations may find low mask efficacies when they 
are performed under virus-rich conditions. Together with 
other influencing factors like consistent and correct mask use 
(supplementary text, section S7.3), changes between virus-
rich and virus-limited conditions may contribute to divergent 
results reported from laboratory studies and randomized 
controlled trials in different environments (20) (supplemen-
tary text, section S8). More importantly, the increasing effec-
tiveness of mask use at low virus abundance implies 
synergistic effects of combining masks with other preventive 
measures that reduce the airborne virus concentration, such 
as ventilation and social distancing. For example, ventilation 
can change an environment from virus-rich to virus-limited 
conditions, which may be particularly important for medical 
centers with relatively high SARS-CoV-2 abundance (see Fig. 
2 and supplementary text, section S6). On the other hand, not 
only the efficacy of face masks but also the efficacy of 

distancing may be reduced in virus-rich environments (sup-
plementary text, section S6). The more measures are used, the 
more effective each measure will be in containing the virus 
transmission. If the inhaled dose may also affect the severity 
of infections (14), as currently debated (24), masks may still 
be useful even if the reduced dose still leads to an infection. 

Figure 4 shows the size distribution of respiratory parti-
cles emitted by different human activities (25–27). Note that 
aerosols are physically defined as airborne solid or liquid par-
ticles with diameters smaller than 100 μm, which can remain 
suspended over extended periods of time. In medical studies, 
however, a threshold diameter of 5 μm has often been used 
to distinguish between a so-called “aerosol mode” and a 
“droplet mode”. Our analysis of measurement data from ex-
haled and ambient air samples indicates that the so-called 
“aerosol mode” (< 5 μm) contains more viruses than the so-
called “droplet mode” (> 5 μm) (11), although the latter com-
prises a larger volume of liquid emitted from the respiratory 
tract (tables S1 and S2). This may be explained by the follow-
ing mechanisms: a higher viral load occurring in the lower 
respiratory tract where the smaller aerosol particles are gen-
erated (28); or an enrichment of organic surfactants and vi-
ruses upon generation of smaller aerosol particles (29). 
Enrichment of viruses in the aerosol mode can enhance their 
transmission because smaller particles remain suspended for 
a longer time, leading to stronger accumulation and disper-
sion in the air. This may cause higher airborne virus concen-
trations, inhaled virus numbers, and infection risks – 
especially in densely occupied rooms with poor ventilation 
and long periods of exposure. Moreover, small aerosol parti-
cles have a higher penetration rate and higher probability of 
reaching the lower respiratory tract (figs. S5 and S6). 

Our analysis was focused on respiratory particles and 
droplets with diameters smaller than 100 μm (traditional 
physical definition of aerosols (30)). Because of rapid gravita-
tional settling, respiratory droplets larger than 100 μm are 
removed from the air within seconds, but they may still reach 
the upper respiratory tract of persons in close contact and 
cause infections by carrying large numbers of viruses in their 
very large liquid volume. For example, a single one-millime-
ter droplet may carry as many as ~50,000 viruses in case of a 
viral load of 108 per milliliter respiratory fluid, which is real-
istic and higher than the estimated infectious dose for SARS-
CoV-2 (14). Such large droplets, however, are very efficiently 
(~100%) removed even by simple masks (Fig. 4 and supple-
mentary text, section S3), further emphasizing the im-
portance and efficacy of face masks for preventing infections. 
Because of the strong size dependence and to avoid ambigui-
ties, we suggest that diameter range should be explicitly spec-
ified when discussing airborne transmission by fine 
respiratory aerosol particles or larger droplets. 
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Our results have important implications for understand-
ing and communicating preventive measures against the 
transmission of airborne viruses including SARS-CoV-2. 
When people see images or videos of millions of respiratory 
particles exhaled by talking or coughing, they may be afraid 
that simple masks with limited filtration efficiency (e.g., 30-
70%) cannot really protect them from inhaling these parti-
cles. However, as only few respiratory particles contain vi-
ruses and most environments are in a virus-limited regime, 
wearing masks can indeed keep the number of inhaled vi-
ruses in a low Pinf regime and explain the observed efficacy of 
face masks in preventing the spread of COVID-19. However, 
unfavorable conditions and the large variability of viral loads 
may lead to a virus-rich regime in certain indoor environ-
ments, such as medical centers treating COVID-19 patients. 
In such environments, high efficiency masks and further pro-
tective measures like efficient ventilation should be used to 
keep the infection risk low. The nonlinear dependence of 
mask efficacy on airborne virus concentration, i.e., the higher 
mask efficacy at lower virus abundance, also highlights the 
importance of combining masks with other preventive 
measures. Effective ventilation and social distancing will re-
duce ambient virus concentrations and increase the effective-
ness of face masks in containing the virus transmission. 
Moreover, high compliance and correct use of masks is im-
portant to ensure the effectiveness of universal masking in 
reducing the reproduction number (supplementary text, sec-
tion S7.3, and fig. S11) (20). 
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Fig. 1. Schematic illustration of different regimes of abundance of 
respiratory particles and viruses. The solid curve represents the infection 
probability (Pinf) as a function of inhaled virus number (Nv) scaled by median 
infectious dose IDv,50 at which Pinf = 50%. In the virus-rich regime (A and B), 
the concentration of airborne viruses is so high, that both number of viruses 
inhaled with or without mask (Nv,mask, Nv) are much higher than IDv,50 and Pinf 
remains close to ~1 even if masks are used. In the virus-limited regime (C 
and D), Nv and Nv,mask are close to or lower than IDv,50 and Pinf decreases 
substantially when masks are used, even if the masks cannot prevent the 
inhalation of all respiratory particles. In panels B and D, the red dots 
represent respiratory particles containing viruses, and the open green 
circles represent respiratory particles without viruses. 
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  Fig. 2. Infection probabilities and 

abundance regimes of SARS-CoV-2 and 
other respiratory viruses. (A and B) 
Individual infection probabilities (Pinf) 
plotted against inhaled virus number (Nv) 
scaled by characteristic median infectious 
doses of IDv,50 = 100 or 1000, respectively. 
The colored data points represent the mean 
numbers of viruses inhaled during a 30-min 
period in different medical centers in China, 
Singapore, and the USA, according to 
measurement data of exhaled coronavirus, 
influenza virus, and rhinovirus numbers 
(blue circles) (11) and of airborne SARS-
CoV-2 number concentrations (red 
symbols) (15–18), respectively. The error 
bars represent one geometric standard 
deviation. (C) Population-average infection 
probability (Pinf,pop) curves assuming 
lognormal distributions of Nv with different 
standard deviations of σ = 0, 1, and 2, 
respectively. The x-axis represents the 
mean value of log(Nv/IDv,50). The shaded 
area indicates the level of basic population-
average infection probability, Pinf,pop,0, for 
SARS-CoV-2 as calculated from the basic 
reproduction number for COVID-19 and 
estimated values of average duration of 
infectiousness and daily number of 
contacts. 
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Fig. 3. Reduction of airborne transmission by face masks worn by 
infectious persons only (source control), by susceptible persons only 
(wearer protection), or by all persons (universal masking). (A) 
Population-average infection probability in case of mask use (Pinf,pop,mask) 
plotted against infection probability without face masks (Pinf,pop); and (B) 
corresponding mask efficacy, i.e., relative reduction of infection probability, 
ΔPinf,pop/Pinf,pop, plotted against Pinf,pop for surgical masks. (C and D) same as 
(A) and (B) but for N95/FFP2 masks; plots with linear scaling are shown in 
fig. S8. The lines represent the results obtained for source control (red line), 
wearer protection (yellow line), and the combination of both measures, i.e., 
universal masking (blue line) in a population where the virus exposure is 
lognormally distributed with a standard deviation of σ = 1 (supplementary 
text, section S5). The shaded areas indicate the level of basic population-
average infection probability, Pinf,pop,0, corresponding to the basic 
reproduction number for COVID-19. 
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Fig. 4. Volume size distributions of respiratory particles emitted 
during different respiratory activities with and without masks. 
Sneezing (A), coughing (B), speaking (C), and breathing (D). The open 
circles are measurement data obtained without masks, and the solid 
lines are bi- or trimodal fits to the measurement data (25–27) 
(supplementary text, section S1.1). The dashed and dotted lines are 
obtained by scaling with the filter efficiency curves of surgical masks and 
of N95/FFP2 masks, respectively (supplementary text, section S3). The 
symbols vp and Dp represent the volume concentration and diameter of 
respiratory particles, respectively, and dvp/dlog Dp represents the 
volume distribution function (supplementary text, section S1.1). 
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