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Abstract
Here we present a review of the literature of influenza modeling studies, and discuss how these
models can provide insights into the future of the currently circulating novel strain of influenza A
(H1N1), formerly known as swine flu. We discuss how the feasibility of controlling an epidemic
critically depends on the value of the Basic Reproduction Number (R0). The R0 for novel influenza
A (H1N1) has recently been estimated to be between 1.4 and 1.6. This value is below values of R0
estimated for the 1918–1919 pandemic strain (mean R0~2: range 1.4 to 2.8) and is comparable to
R0 values estimated for seasonal strains of influenza (mean R0 1.3: range 0.9 to 2.1). By reviewing
results from previous modeling studies we conclude it is theoretically possible that a pandemic of
H1N1 could be contained. However it may not be feasible, even in resource-rich countries, to
achieve the necessary levels of vaccination and treatment for control. As a recent modeling study
has shown, a global cooperative strategy will be essential in order to control a pandemic. This
strategy will require resource-rich countries to share their vaccines and antivirals with resource-
constrained and resource-poor countries. We conclude our review by discussing the necessity of
developing new biologically complex models. We suggest that these models should simultaneously
track the transmission dynamics of multiple strains of influenza in bird, pig and human populations.
Such models could be critical for identifying effective new interventions, and informing pandemic
preparedness planning. Finally, we show that by modeling cross-species transmission it may be
possible to predict the emergence of pandemic strains of influenza.

Introduction
Mathematical models have been used to understand the
spatial-temporal transmission dynamics of influenza.
They have also been used as health policy tools to predict
the effect of public health interventions on mitigating
future epidemics or pandemics. The potential epidemio-
logical impact of both behavioral and biomedical inter-
ventions has been investigated. Here we present a review
of the literature of influenza modeling studies and discuss
how results from these studies can provide insights into

the future of the currently circulating strain of novel influ-
enza A (H1N1). This strain was formerly known as swine
flu [1].

A basic epidemiological model for Influenza
The first mathematical model that could be used to
describe an influenza epidemic was developed early in the
20th century by Kermack and McKendrick [2]. This model
is known as the Susceptible-Infectious-Recovered (SIR)
model, and is shown as a flow diagram in Figure 1. To
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simulate an influenza epidemic the model is analyzed on
a computer and one infected individual (I) is introduced
into a closed population where everyone is susceptible
(S). Each infected individual (I) transmits influenza, with
probability β, to each susceptible individual (S) they
encounter. The number of susceptible individuals
decreases as the incidence (i.e., the number of individuals
infected per unit time) increases. At a certain point the
epidemic curve peaks, and subsequently declines, because
infected individuals recover and cease to transmit the
virus. Only a single influenza epidemic can occur in a
closed population because there is no inflow of suscepti-
ble individuals. The severity of the epidemic and the ini-
tial rate of increase depend upon the value of the Basic
Reproduction Number (R0). R0 is defined as the average
number of new infections that one case generates, in an
entirely susceptible population, during the time they are
infectious. If R0 > 1 an epidemic will occur and if R0 < 1 the
outbreak will die out. The value of R0 for any specific epi-
demic can be estimated by fitting the SIR model to inci-
dence data collected during the initial exponential growth
phase. The value of R0 may also be calculated retroactively

from the final size of the epidemic. If the SIR model is
used, R0 for influenza is equal to the infectivity/transmis-
sibility of the strain (β) multiplied by the duration of the
infectious period. Therefore once the value of R0 has been
obtained, the value of β can be determined.

The SIR model has been used as a basis for all subsequent
influenza models. The simplest extension to the SIR
model includes demographics; specifically, inflow and
outflow of individuals into the population. Analysis of
this demographic model shows that influenza epidemics
can be expected to cycle, with damped oscillations, and
reach a stable endemic level (Figure 2A). By modifying the
basic SIR model in a variety of ways (e.g., by including sea-
sonality [3,4]) influenza epidemics can be shown to have
sustained cycles (Figure 2B). The SIR model has also been
extended so that it can be used to represent and/or predict
the spatial dynamics of an influenza epidemic. The first
spatial-temporal model of influenza was developed in the
late 1960s by Rvachev [5]. He connected a series of SIR
models in order to construct a network model of linked
epidemics. He then modeled the geographic spread of
influenza in the former Soviet Union by using travel data
to estimate the degree of linkage between epidemics in
major cities. In the 1980s, he and his colleagues Baroyan
and Longini extended his network model and evaluated

Compartmental SIR model of disease transmissionFigure 1
Compartmental SIR model of disease transmission. 
The population is partitioned into three classes: Susceptible 
(S), Infectious (I), and Recovered (R). Individuals who 
become infected proceed from class S to class I at a rate 
which depends on the infectiousness of the virus and the 
prevalence of infection. Infectious individuals recover and 
move to class R, at which point they are immune to future 
infection. The model can be straightforwardly extended to 
include immunity which wanes over time.

Daily incidence for an influenza outbreak calculated using an SIR modelFigure 2
Daily incidence for an influenza outbreak calculated 
using an SIR model. (a) With constant transmission rate. 
(b) With small seasonal variation in transmission rate. For a 
constant transmission rate, after an initial transient period, 
the system approaches an endemic level (that is, equilibrium) 
by damped oscillations. If a small amount of seasonal varia-
tion in transmission is introduced oscillations are sustained 
rather than damping out, and the system eventually tends to 
an annual cycle.
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the effect of air travel on influenza pandemics [6,7]. Since
then other modeling studies have quantified the impor-
tance of air travel on geographic spread [8,9]. For exam-
ple, a recent study has modeled the potential for influenza
epidemics to move through nine European cities: Amster-
dam, Berlin, Budapest, Copenhagen, London, Madrid,
Milan, Paris, and Stockholm [8]. The authors estimate
that, due to a high degree of connectedness through air
travel, it would take less than a month for an epidemic
beginning in any one of these cities to spread to the other
eight [8]. Network models have also been use to under-
stand the temporal and spatial synchrony of influenza
epidemics within the United States (US) [10].

Modeling the past
Modeling studies have provided interesting insights into
the severity of past influenza epidemics and pandemics
[11-15]. For example, Chowell and colleagues have com-
pared the severity of seasonal influenza epidemics in the
US, France, and Australia over the past three decades by
estimating country-specific values of R0 [11]. Their results
show the severity of the epidemics in the three countries
is similar every year, but there is considerable year to year
variability (mean R0 is 1.3; range is 0.9 to 2.1) [11]. Many
modeling studies have investigated the three historical
pandemics of the 20th century: the Spanish Flu 1918–
1919 (H1N1), Asian Flu 1957–1958 (H2N2), and Hong
Kong Flu 1968 (H3N2) [7,12-17]. Mills et al., using pneu-
monia and influenza mortality data collected in 45 cities
in the USA, estimated that the value of R0 for the 1918–
1919 pandemic was between 2 and 3 [14]. Ferguson et al.
reached similar conclusions; they estimated that an R0~2
with a range of 1.4 to 2.8 [18]. Modeling has also been
applied to assess the effect that interventions may have
had in mitigating the 1918–1919 pandemic [12,17].
Bootsma et al. [12] estimated that public health measures,
based on social distancing, reduced mortality by 10 to
30% in cities in the US. They concluded that the timing of
public health interventions strongly influenced the mag-
nitude of the autumn wave of influenza [12]. Another
study used data on daily mobility patterns of fur traders
traveling between settlements, and modeled the effective-
ness of voluntary quarantine on the spread of influenza in
central Canada during the 1918–1919 pandemic [17].
The authors found that, as mobility rates were low, only
extremely high rates of quarantine would have signifi-
cantly altered the pattern of geographic spread [17].

Designing biomedical and behavioral public 
health interventions
Behavioral and biomedical interventions have been mod-
eled using relatively simple extensions of the SIR model
(as shown in Figures 3 and 4[19]) or by implementing the
SIR model within a framework of a detailed simulation
model [10]. Figure 3 shows an extension of the SIR model

that includes two biomedical interventions: susceptible
individuals (S) can be vaccinated and infected individuals
(I) can be treated with antiviral drugs (T). Figure 4 shows
an extension that includes two behavioral interventions:
quarantine and isolation. Susceptible individuals (S) can
be quarantined (QS) and then returned to the pool of sus-
ceptible individuals (S) once it is determined they are
uninfected. In addition, infected, asymptomatic and not
yet infectious individuals (E) can be quarantined (QE). If
they develop symptoms and become infectious they can
be isolated (QI), as can the infected individuals (I) (Figure
4). Once interventions have been included in the model
the Reproduction Control Number (RC) can be deter-
mined. RC is defined as the average number of new infec-
tions that one case generates, in an entirely susceptible
population when an intervention is in place, during the
time they are infectious. The value of RC will depend on
both the strength of the intervention and the severity of
the epidemic in the absence of the intervention (R0). RC
will always be less than R0, but if RC < 1 the intervention
will cause the epidemic to die out, whereas if RC > 1 the
intervention will only reduce the severity of the epidemic.

The effect of behavioral interventions such as closing
schools, quarantining infected individuals or imposing
travel restrictions have been modeled [17,18,20-23]. It
has been shown that behavioral interventions that

SIR compartmental model of disease transmission incorpo-rating vaccination and treatmentFigure 3
SIR compartmental model of disease transmission 
incorporating vaccination and treatment. Susceptible 
individuals (S) who are vaccinated proceed to class V, at 
which point they are considered immune. Upon treatment, 
infectious individuals (I) proceed to class T, at which point 
their infectiousness is reduced.
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increase social distancing, such as prolonged school clo-
sures, could reduce the cumulative number of influenza
cases by 13 to 17% [20]. Studies have been useful for com-
paring interventions. For example, Ferguson et al. have
determined that household quarantine could be more
effective than closing schools [18]. The potential effective-
ness of biomedical interventions (for example, vaccina-
tion, prophylactic treatment with antivirals, and
therapeutic treatment) have been modeled [19,24,25].
Models have also been used to compare the relative effec-
tiveness of prophylaxis versus treatment strategies [24], to
assess the potential problem of antiviral resistance [26-31]
and to identify the optimal strategy for allocating vaccines
[25]. Most studies have evaluated the potential effective-
ness of a combination of behavioral and biomedical inter-
ventions [18,22,23,32]. Some studies have shown that
certain interventions are unlikely to be effective. For
example, Cooper et al., Ferguson et al., and Epstein et al.
have found that even extensive air travel restrictions

would be unlikely to delay spread of a pandemic by more
than a few weeks [18,21,33]. However, Colizza et al. have
shown that a pandemic could be effectively contained if
there is a global cooperative strategy in place, whereby
one country donates some of their stockpiled antivirals to
other countries in need [34]. Not surprisingly, all of the
studies have shown it is essential to implement interven-
tions as quickly and as early in the epidemic as possible.

Feasibility of biomedical and behavioral public 
health interventions
Although many studies have identified potentially effec-
tive public health interventions, they have not assessed
their feasibility. For example, studies evaluating mass vac-
cination strategies have found a very high coverage is
needed to prevent epidemics. However, in the 'real-world'
where vaccination is voluntary, high vaccination coverage
is rarely achieved. Recently Vardavas et al. and Galvani et
al. have investigated the effect of human behavior on
determining vaccination coverage [35,36]. Vardavas et al.
constructed a dynamic individual-level model of human
cognition and behavior; individuals in this model are
characterized by two biological attributes (memory and
adaptability) they use when making vaccination decisions
[35]. Individuals are allowed to decide, on the basis of
self-interest, whether to vaccinate or not each year. In
addition, individuals are given an option of changing
their vaccination behavior each year. Consequently, indi-
vidual-level adaptive behavior influences influenza epide-
miology, and conversely, influenza epidemiology
influences individual-level vaccination decisions. Galvani
et al. took a different approach and developed a static
model based on Game Theory [36]. Both Vardavas et al.
and Galvani et al. showed that coverage levels high
enough to achieve herd immunity could only be attained
by implementing incentive-based vaccination programs
[35,36]. However, Vardavas et al. also showed that certain
of these programs could, paradoxically, increase epidemic
severity [35]. They therefore recommend incentive-based
vaccination programs will need to be very carefully
designed [35]. The studies of Vardavas et al. and Galvani
et al. illustrate that models can be used to identify the
strength of the interventions that are necessary to control
an epidemic or pandemic, but the goals of the control
strategy may not be attainable.

The feasibility of controlling an epidemic will critically
depend on the value of the R0. The more severe the epi-
demic (i.e., the greater the value of R0) the more intensive
the interventions must be to significantly reduce the
number of infections and deaths. Not surprisingly, the
levels of vaccination or treatment necessary for control are
lower if interventions are targeted. For example, Longini et
al. modeled the effects of age-specific targeting strategies
and found vaccinating 80% of children (less than 19 years

SEIR compartmental model of infection incorporating quar-antine and isolation measuresFigure 4
SEIR compartmental model of infection incorporat-
ing quarantine and isolation measures. The class E rep-
resents a latent class during which an individual who has been 
exposed to the pathogen is not yet infectious and is asympto-
matic. Individuals who might have been exposed (S and E) are 
quarantined and proceed to the respective Q classes: QS and 
QE. When susceptible individuals in quarantine (QS) are 
determined not to have been infected they are returned to 
the susceptible class (S). Those in quarantine who develop 
infection (QE) are isolated and proceed to class (QI), as do 
infected individuals (I).
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old) would be almost as effective as vaccinating 80% of
the entire population [24]. Longini et al. also found that
targeting antiviral prophylaxis (that is, providing close
contacts of suspected cases with antivirals) could be
extremely effective in controlling epidemics [24]. How-
ever even using a targeted approach they determined it
would be necessary for 80% of exposed individuals to be
quickly identified, and for them to take antivirals for up to
8 weeks in order to mitigate a severe epidemic [24].

Many studies have evaluated the level of interventions
needed to contain epidemics of varying severity. For
example, Colizza et al. simulated a hypothetical influenza
pandemic that was capable of spreading through 3,100
urban areas in 220 countries [34]. When R0was less than
1.9 they found the epidemic could be significantly
reduced if there were enough antivirals to treat ~2–6% of
the population. However, when they modeled a very
severe epidemic (R0 of 2.3) their simulations showed, that
even if ~20% of the population were treated with antivi-
rals, 30–50% of the population would become infected
[34]. Longini et al. conducted a similar type of analysis,
but assessed the potential for interventions to control an
emerging influenza epidemic in rural South East Asia [22].
They determined that targeted antiviral prophylaxis could
contain a moderately severe epidemic (R0 < 1.6) if
100,000 to 1 million courses of antivirals were available.
A combination of targeted antiviral prophylaxis and pre-
epidemic vaccination would be necessary to contain a
severe epidemic (R0~2.1). Finally, they calculated that a
combination of high levels of targeted antiviral prophy-
laxis, pre-vaccination, and quarantine could contain even
a very severe epidemic (R0~2.4). Ferguson et al. also mod-
eled an emerging influenza epidemic in South East Asia
[32]. Their results show geographically targeted prophy-
laxis, reinforced with behavioral interventions aimed at
increasing social distancing, would be necessary to con-
tain an epidemic with an R0 of ~1.6. They calculated that
3 million courses of antivirals would be needed for their
proposed control strategy.

The results from all of the modeling studies are in agree-
ment; very high vaccination and treatment levels will be
necessary to contain even a moderately severe pandemic.
It will be difficult, but perhaps possible, to achieve these
goals for interventions in resource-rich countries. How-
ever, clearly resource-constrained and resource-poor
countries will be unable to achieve these goals unless they
are given very large supplies of vaccines and antivirals by
resource-rich countries.

Modeling Influenza A (H1N1): emergence and 
control
Influenza is a zoonotic disease that can infect a variety of
host species. Strains can be transmitted between species,

and new strains can emerge through co-infection and
genetic recombination in intermediate hosts. Wild ducks
and wading birds are considered to be a reservoir for influ-
enza because they can carry all subtypes, and the virus is
avirulent to its avian hosts. Avian viruses are also found in
other birds such as domestic ducks and poultry. New
strains of avian influenza have recently emerged in South
East Asia and have infected humans. These strains are not
transmissible from human to human; however, they are
highly virulent in humans and have killed approximately
70% of infected individuals [37]. Besides humans, avian
influenza viruses infect a variety of other mammals
including seals, whales, and pigs [38]. Considerable atten-
tion has been focused on avian influenza as it has been
expected that pandemic strains would arise from trans-
mission from birds to humans. However, surprisingly,
influenza A (H1N1) emerged through cross-species trans-
mission from pigs to humans and has been shown to have
arisen due to recombination between swine, avian, and
human strains.

The first modeling paper on influenza A (H1N1) has
recently been published [39]. By fitting an SIR model to
initial outbreak data from La Gloria in Mexico Fraser et al.
estimated the R0 for this novel strain to be between 1.4 to
1.6 [39]. This value is on the lower end of previous values
for the 1918–1919 strain (R0 mean ~2: range 1.4 to 2.8
[18]) and is comparable to R0 values estimated for sea-
sonal strains of influenza (R0 mean 1.3: range 0.9 to 2.1
[11]). (It is important to note that there is considerable
overlap in the estimates of R0 for seasonal and pandemic
strains.) The public health measures that were widely
applied in Mexico appear to have been successful in miti-
gating the outbreak of H1N1; this observation appears to
corroborate results from earlier modeling studies [23] that
show behavioral interventions can be very effective if R0 is
below two. The R0 results of Fraser et al. from La Gloria (R0
for H1N1 lies between 1.4 and 1.6) indicate that it is the-
oretically possible to control this pandemic. However, as
we have discussed previously, an effective control strategy
that has been identified by modeling may not be a feasible
control strategy. If a vaccine is available by the autumn
there is likely to be high uptake, due to the publicity sur-
rounding the initial outbreak of this strain. If the initial
estimates of the R0 for H1N1 are correct then this high vac-
cination coverage could have a significant effective on
mitigating the pandemic, at least in resource-rich coun-
tries. However, H1N1 has now been disseminated world-
wide through air travel. Consequently, it will be necessary
for resource-rich countries to share vaccines and antivirals
in order to mitigate a pandemic. Such a global cooperative
strategy will be essential to prevent resource-constrained
and resource-poor countries suffering from a significantly
disproportionate burden of morbidity and mortality.
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Fraser et al. modeled the transmission dynamics of influ-
enza A (H1N1) in the human population, but did not
include cross-species transmission [39]. The emergence of
H1N1 has shown the necessity for developing more bio-
logically complex models that can provide a comprehen-
sive understanding of strains that arise due to cross-
species transmission. Coburn has recently developed one
such complex model that tracks influenza transmission
dynamics within three species (birds, pigs, and humans),
as well as between these species [40]. His model includes
several species-specific strains that infect birds, pigs, and
humans. He models pigs as 'mixing vessels' which can be
co-infected with avian, swine, and human strains of influ-
enza. Species-specific strains can then undergo recombi-
nation in infected pigs and generate 'super-strains' that
can be transmitted from pigs to humans. Analysis of his
model generates significant insights into understanding
the emergence of novel recombinant strains of influenza
(such as H1N1), as well as in predicting their epidemic
and pandemic potential. Surprisingly, his results show
that an epidemic with an intermediate value of R0 could
result in significantly more infected individuals than an
epidemic with a high value of R0; see Figure 5 (the value
of the transmissibility of the 'super-strain' in humans cor-
responds to the value of the R0). Specifically, the contour

map in Figure 5 illustrates that the greatest outbreak
occurs when the transmissibility/infectivity of the "super-
strain" is greater than 0.024 and less than 0.04; this
implies 2.3 < R0 < 3.8. In addition, Coburn's modeling
shows that at low values of R0 the number of individuals
that become infected will be very dependent on the degree
of interaction between humans and pigs (Figure 5).
Coburn's results illustrate how, by modeling cross-species
transmission and determining the degree of interaction
between pigs and humans, it may be possible to predict
the emergence of pandemic strains of influenza.

To the best of our knowledge there are only two published
studies that have modeled interventions for influenza
strains that arise due to cross-species transmission. Iwami
et al. modeled epidemics that result as a consequence of
cross-species (that is, avian-human) transmission [41].
Their results show the potential effectiveness of quaran-
tine as a control strategy, and also the importance of
simultaneously controlling influenza in the avian popula-
tion [41]. Saenz et al. modeled the potential effect of pigs
(or poultry) on amplifying the number of infections that
would arise as the result of a new strain of influenza [42].
They modeled the transmission dynamics in a confined
feeding operation (CAFO) as a result of interactions

Results from a cross-species multi-strain transmission model where pigs act as 'mixing vessels'Figure 5
Results from a cross-species multi-strain transmission model where pigs act as 'mixing vessels'. This figure shows 
the severity of the epidemic that occurs when a 'super-strain' emerges into the human population from pigs, as a function of 
the cross-species interaction and the transmissibility/infectivity of the 'super-strain' in humans. The maximal number of infec-
tives that could occur in any year (estimated over a 150-year time period) is shown in dark red. The contour map illustrates 
that the greatest outbreak occurs when the transmissibility/infectivity of the 'super-strain' is greater than 0.024 and less than 
0.04; this implies 2.3 <R0 < 3.8.
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between three groups: CAFO species (either swine or
poultry), CAFO workers, and the rest of the local popula-
tion. Their results show that amplification would be pre-
vented if at least 50% of the CAFO workers could be
successfully vaccinated [42]. They suggest that a vaccina-
tion strategy targeted at CAFO workers could be an effec-
tive strategy for containing a pandemic. Notably, the
interventions suggested by Iwami et al. [41] and Saenz et
al. [42] are interventions that cannot be identified unless
cross-transmission is included in the model.

Summary and conclusion
As we have discussed in this review, mathematical models
have been extremely useful in increasing our understand-
ing of the spatial-temporal transmission dynamics of
influenza. They have also provided assistance in evaluat-
ing the potential effectiveness of public health interven-
tions in controlling pandemics of varying severity, where
severity has been defined by the value of R0. However, we
have stressed that, although many theoretical interven-
tions have been identified they may not be feasible. Fur-
thermore, we have argued that pandemic control will only
be attainable with a global cooperative strategy. Our
review has shown that current models may not be useful
in identifying effective interventions for epidemics gener-
ated by strains, such as influenza A (H1N1), that emerge
due to recombination of species-specific strains and sub-
sequent cross-species transmission. Therefore, we recom-
mend that more biologically complex models need to be
developed. Analysis of such models could assist in identi-
fying interventions that would be effective in reducing the
probability of cross-species transmission and in mitigat-
ing pandemics driven by multi-species transmission.
Results from these new policy models could provide criti-
cal insights for informing pandemic preparedness plan-
ning.
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