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ABSTRACT Airborne disease transmission is central to many scientific disciplines,
including agriculture, veterinary biosafety, medicine, and public health. Legal and
regulatory standards are in place to prevent agricultural, nosocomial, and community
airborne disease transmission. However, the overall importance of the airborne path-
way is underappreciated; e.g., the U.S. National Library of Medicine’s Medical
Subjects Headings (MESH) thesaurus lacks an airborne disease transmission indexing
term. This has practical consequences, as airborne precautions to control epidemic
disease spread may not be taken when airborne transmission is important but unrec-
ognized. Publishing clearer practical methodological guidelines for surveillance stud-
ies and disease outbreak evaluations could help address this situation. To inform
future work, this paper highlights selected, well-established airborne transmission
events, largely cases replicated in multiple, independently conducted scientific stud-
ies. Methodologies include field experiments, modeling, epidemiology studies, dis-
ease outbreak investigations, and mitigation studies. Collectively, this literature dem-
onstrates that airborne viruses, bacteria, and fungal pathogens have the ability to
cause disease in plants, animals, and humans over multiple distances, from near
range (,5 m) to continental (.500 km) in scale. The plausibility and implications of
undetected airborne disease transmission are discussed, including the notable under-
reporting of disease burdens for several airborne-transmitted diseases.

KEYWORDS atmosphere, airborne infectious disease, aerosol, droplet nuclei, inhalation
exposure

Air is not a sterile medium, as initially demonstrated in the early-19th-century
experiments of Louis Pasteur. Bacteria and fungi are ubiquitous in the atmosphere

and reach concentrations of about 104 and 103 cells m23 in air, respectively (1–4).
These facts are well understood and elucidated within the field of aerobiology, which
has documented the life cycles, including the atmospheric transport and dispersion, of
naturally occurring airborne viruses, microorganisms, and bioaerosols (5–7).

Both near-range and long-range airborne infectious disease transmission events are
well documented in the plant biology, veterinary and agricultural biosafety, clinical
medicine, and public health literature. However, these findings are not always widely
disseminated across these specialties or to the wider scientific community. As a conse-
quence, the true scope and characteristics of airborne disease transport can be under-
appreciated. This has practical consequences when airborne disease transmission is
not recognized during a disease outbreak, and so precautions against airborne disease
transmission to control epidemic disease spread may not be taken.

To assist the scientific community in better understanding the characteristics of
long-distance airborne infectious disease transmission and its prevention and control,
we provide here a selective, documentary review of well-established examples of air-
borne disease dispersions sorted according to transmission distance scale. The exam-
ples include the near-range-scale (,5-m) spread typically seen in clinical medicine up
to continental-scale (.500-km) transmission. Due to its rapid development, this review
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does not review the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)/co-
ronavirus disease 2019 (COVID-19) literature, but it highlights key prior coronavirus
studies.

ATMOSPHERIC INFECTIOUS DISEASE TRANSMISSION
Near range (,5 m). In the medical context, near-range airborne disease spread

(,5 m) is common and occurs when infected individuals generate large quantities of
infectious droplet particles (and droplet nuclei) when coughing or sneezing (8, 9).
Tuberculosis (TB) and measles virus (rubeola) have long been known to transmit over
this distance (10, 11). Bordetella pertussis (whooping cough), varicella-zoster virus
(chickenpox), mumps virus, rubella virus (German measles), and Neisseria meningitidis
(bacterial meningitis) are additional examples (12, 13). This near-range airborne disease
spread is known to contribute to the overall disease burden as lower respiratory infec-
tions and tuberculosis are the 4th and 10th leading causes of death worldwide (14).
Finally, 2% of U.S. adults (6.5 million) are hospitalized each year for the treatment of
community-acquired pneumonia caused in part by the near-range airborne transmis-
sion of common bacteria and viruses, including influenza virus (15). We note that the
airborne disease transmission pathway can contribute to overall disease transmission,
even when other—droplet (.5-mm-aerodynamic-diameter particles) and contact—
pathways are important (e.g., see references 16 and 17).

With respect to pathogenic coronaviruses, avian infectious bronchitis virus (IBV) dis-
ease was the first near-range airborne-spread disease to be clinically recognized in
1931. Currently, IBV is a high-mortality-rate upper respiratory infection with a global
economic impact on poultry production (18). IBV has multiple routes of transmission,
including inhalation, drinking of contaminated water, and direct contact (19). Vaccines
are a mainstay of IBV disease control (20), with multiple strain-specific vaccines in rou-
tine use to improve morbidity and mortality. Live IBV vaccines are given by spray or
aerosol or in drinking water (19). Humans can be infected, but human disease is not
documented (21).

Human-pathogenic coronavirus infections were first identified in the early 1960s,
and 4 strains (human coronavirus strain 229E [HCoV-229E], HCoV-OC43, HCoV-NL63,
and HCoV-HKU1) are globally distributed (22, 23). These pathogens pose a substantial
burden due to days lost from work and school and medical costs (23, 24). Infections
occur at all ages, but disease is more severe in young children, the elderly, and patients
with underlying medical conditions (25–28). While there is limited published research
on the airborne transmission pathway, we note that these viruses are known to persist
in the atmosphere (29) and collectively constitute the third most common cause of
acute respiratory tract disease (30). Notably, a single population-based prospective
community survey with active case finding documented a large HCoV-229E outbreak
in which one-third of the community was infected and respiratory illnesses in the com-
munity doubled. Most cases were upper respiratory illnesses; however, 40% also had
lower respiratory tract involvement (31).

Short range (5 m to 50 m). The airborne spread of human pathogens within build-
ings has been particularly well documented in both schools (32, 33) and medical care
facilities (34–36). Indeed, Riley et al.’s experimental studies of clinically active tubercu-
losis are classic examples of airborne disease transmission. Air from a clinical TB ward
of active human cases was routed to an animal exposure chamber located in the build-
ing ventilation duct system distant from the patients under treatment. Typical clinical
disease subsequently developed in the test animals (10). In a follow-up study with a
prospective case-control design, unprotected exposed animals again contracted tuber-
culosis, but an animal control group with UV-irradiated air did not (37). The latter study
findings have been replicated (38, 39).

Separately, an expert panel review noted 10 studies documenting airborne disease
transmission in medical settings (hospitals, clinics, and nursing homes) (34). These
studies showed a direct contributory role of ventilation rates and building-related air-
flows in the pattern of the airborne spread of disease at distances farther than could
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have been spread by an infected person coughing, sneezing, or breathing. Airborne
outbreak examples included Mycobacterium tuberculosis, rubeola virus (measles), vari-
cella-zoster virus (chickenpox), and variola virus (smallpox) (37, 40, 41). The U.S.
Centers for Disease Control and Prevention also defines tuberculosis, measles, and
chickenpox as airborne-transmitted diseases, which require formal isolation precau-
tions in hospital settings (42).

We note that within hospital settings, high-infection-risk patient areas are designed
with physical and ventilation barriers to minimize airborne infections. These building
design features include, but are not limited to, permanently sealed hospital room win-
dows and HEPA air filtration (34, 43–45). UV germicidal irradiation is also routinely
used to reduce airborne disease risk in hospitals and other facilities, especially for tu-
berculosis control (46).

With respect to pathogenic coronaviruses, the 2003 Hong Kong SARS epidemic pro-
vided several notable examples of short-range airborne disease transmission. The first
was a large hospital outbreak (34, 47, 48). Disease attack rates were highest (65%) in
the same treatment bay (,5 m) as the index case (an undiagnosed SARS patient),
slightly lower (52%) in a nearby treatment bay (10-m nominal distance from the index
patient) that readily exchanged air with the index patient treatment bay, and much
lower (18%) in patient areas (10-m nominal distance from the index patient) where the
air was less well shared with the index patient treatment bay. The temporal and spatial
spread of infection was consistent with computer modeling of building airflows and
particle physics. Two other localized outbreaks were (i) transmission over a distance of
several meters while flying on an airplane (49) and (ii) spread within high-rise residen-
tial buildings and between buildings 50 m apart (50, 51). Subsequently, the possibility
of airborne disease transmission was investigated in a 2015 hospital outbreak of
Middle East respiratory syndrome coronavirus (MERS-CoV) (52).

In plant biology and biosafety studies, short-range (,50-m) airborne particle and
pathogen transmissions are thought to be the most frequent scenarios. For example,
initial median windborne (anemochorous) plant seed dispersals are typically short
(,10 m), but the 95th percentile for airborne seed dispersion occurs over longer dis-
tances and varies significantly by species (53–55). In plant pathology studies of wheat
stripe rust (Puccinia striiformis f. sp. tritici) and the wind-dispersed banana plant fungus
Mycosphaerella fijiensis (56, 57), single-field experimental studies are used to model ini-
tial local-plot/field-level airborne pathogen dispersal and clearly demonstrate short-
range airborne infection transmission. These studies have also been used to develop
source (emission) estimates for larger-scale, long-distance disease spread and propa-
gated epidemics (57).

Medium range (50 m to 500 m). Epidemiological disease outbreak studies provide
human data for medium-range airborne disease transmission. Well-documented exam-
ples include ongoing community-level outbreaks of Legionnaires’ disease (Legionella
pneumophila) from building cooling towers (58–66), Q fever (Coxiella burnetii) transmis-
sion from livestock farms to their surrounding communities (67), as well as histoplas-
mosis (Histoplasma capsulatum) and Aspergillus fumigatus and A. flavus dispersions
from construction work or sites where contaminated soil is disturbed (68–74). On this
spatial scale, best practices and regulatory standards aim to reduce the risk of the air-
borne transport of infectious particles. Guidelines exist to control occupational and
environmental construction-associated dust during building renovations. In regions of
endemicity, these guidelines are codified into law to reduce infections (75, 76).

Newcastle disease (ND) virus, an avian paramyxovirus, is one well-known example
of an airborne disease. It is a commercially important pathogen globally in poultry pro-
duction (77–80). ND has the potential to transmit over medium-range distances, as
demonstrated by positive viral cultures of air samples at 60 m in field experiment stud-
ies (80). Recent experimental work has reconfirmed an airborne transmission route for
ND virus (78), and some live-virus vaccines are delivered via fine aerosolized powders
(79). While vaccines are a mainstay of disease control, the disease remains endemic in
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many countries (78). Studies have shown that negative air ionization and dilute virici-
dal chlorine aerosols are useful in preventing ND virus infections (81, 82).

Porcine reproductive and respiratory syndrome virus (PRSSV) disease in swine also
has global economic impacts despite the availability of vaccines (83). Medium-range
PRRSV airborne transmission at distances of 80 to 120 m has been clearly demon-
strated in experimental field studies (84, 85). Field studies and a long-term controlled
production model prospective study with positive and negative controls demonstrated
the efficacy of air filtration to protect animals in farm buildings from airborne PRRSV
(84). Indeed, air filtration of farm buildings is effective at controlling pandemic PRRSV
infections, even when conventional controls, intended to protect against other infec-
tion pathways, have failed. Building air filtration systems have since become an indus-
try standard in U.S. pig breeding and production (86). Filtration has also shown efficacy
in reducing emissions of airborne methicillin-resistant Staphylococcus aureus (MSRA)
from farm buildings (87).

Furthermore, with respect to potential medium-range airborne disease transmis-
sion, there is also a long-standing, yet still evolving, literature that supports existing
regulatory standards aimed at protecting workers and nearby communities from air-
borne pathogen dispersal from environmental sites such as composting facilities, sew-
age processing and wastewater aerosols, agricultural gray water aerosols, livestock
feed yards, and land applications of manure (88–96). As one example, a protective ring
of up to 250 m is commonly specified under the assumption that existing air monitors
detect little to no viable infectious airborne material beyond that point (92, 93, 97).

Long range (500 m to 500km). Long-distance atmospheric infectious disease dis-
persions, termed LDD in the plant biology and agricultural biosafety literature, have
been shown to play crucial ecological roles in plant species invasion, migration, and
survival as well as plant pathogen dispersal (98–104). In veterinary biosafety studies,
this field is well advanced in its understanding of the connection between airborne
pathogen transport and dispersion and disease epidemics (105–108).

Biosafety experimental field studies also clearly demonstrate kilometer-range disper-
sion of plant pathogens. For example, fungal plant pathogens are an increasing threat to
world food security (109). A wind-dispersed banana plant fungus (Mycosphaerella fijien-
sis) field experiment documented 1-km airborne dispersal in one generation (56). Studies
such as these together with the above-mentioned plant biology and biosafety literature
demonstrate that airborne infection probability initially decreases rapidly with distance,
which is then followed by a regimen of lower-probability kilometer-range LDD events
(termed a “long dispersion tail”).

In the United States, long-range airborne spread of economically significant plant
disease across the landscape is an ongoing concern. Predictable seasonal airborne
pathogen incursion pathways across the continent are well identified and routinely
monitored to protect crop yields. These continental-scale incursions typically proceed
in a stepwise series of shorter (long-range) airborne dispersions. Chief examples are
the seasonal airborne south-to-north U.S. dispersion incursion pathways across the
Midwest Great Plains for wheat stem rust (Puccinia graminis f. sp. tritici), the pandemic
spread of tobacco blue mold spores (Peronospora tabacina) across the eastern United
States, and seasonal U.S. airborne invasion by soybean rust (Phakopsora pachyrhizi
Sydow) (103, 110–113).

In the veterinary literature, there are many examples of probable kilometer-
range airborne infection transmission. For example, Newcastle disease virus, equine
influenza (A/H3N8) virus, highly pathogenic avian influenza A (H7N7) virus, PRRSV, and
Mycoplasma hyopneumoniae are important ongoing diseases, and each has evidence
for long-range airborne transmission (114–119). The best-described long-range air-
borne-transmitted disease in animals is foot-and-mouth disease virus (FMDV), an eco-
nomically significant disease of veterinary livestock. Long-range FMDV aerosols have
contributed to a number of costly, regional-scale disease outbreaks in Europe, includ-
ing airborne transmission from continental Europe to the United Kingdom (120, 121).
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FMDV research has motivated the development and testing of scientific models and
forecasting capabilities for long-range infectious aerosol dispersions with the aim of
limiting epidemic spread (105–108, 122–126).

In the human epidemiology literature, many well-documented examples exist for
airborne disease transmission over distances of .1 kilometer downwind. Coxiella bur-
netii, an endemic disease of ruminants and livestock, is also the cause of Q fever in
humans (127). Long-range outbreaks of airborne disease spread from animal farms to
human populations have been documented in many European countries (128–132).
Notably, the recent regional-scale Q fever epidemic in 2007 to 2010 in the Netherlands
was caused by infectious aerosols emitted from small-animal farms (133–137). The epi-
demic resulted in 4,000 clinical cases and 2,700 hospitalizations (135). A more recent
2018 follow-up of this outbreak showed that among the 519 chronic Q fever cases
identified, 86 patients had died (138).

Legionella pneumophila dispersions from building cooling towers are also an
ongoing source of kilometer-range community Legionnaires’ disease outbreaks despite
the introduction of preventive legal regulations for cooling equipment maintenance
(63, 139). Significant kilometer-range airborne Legionnaires’ disease outbreaks have
been reported in many countries, including the United States, France, Norway,
Sweden, and Spain (58–62, 64–66, 140–143), and airborne disease models have been
developed (144).

The fungal pathogens Histoplasma capsulatum and Coccidioides immitis and C. posa-
dasii cause significant human disease when inhaled (histoplasmosis and coccidioido-
mycosis [valley fever], respectively). Both are endemic in the United States: histoplas-
mosis in the eastern and midwestern states and coccidioidomycosis in the American
West and Southwest (72, 145). Based on observational epidemiological studies, city-
wide airborne outbreaks of histoplasmosis are suspected to have occurred, two at a
community level (146–148). A series of three large-scale histoplasmosis outbreaks that
occurred in urban Indianapolis, IN, may also have resulted from airborne dispersion
(149–151).

Coccidioidomycosis occurs after inhalation of fungal spores, which are widely dis-
tributed in southwestern U.S. soils (152, 153). Forty percent of exposed persons will
have clinical symptoms, ranging from an influenza-like illness to disseminated disease
and chronic meningitis. Symptomatic disseminated disease requires aggressive treat-
ment and has increased rates of hospitalization and mortality (154, 155). Desert dust
cloud dispersions containing Coccidioides spores are an important ongoing cause of
disease, and legal standards prevent high-risk persons from being assigned to prisons
in areas of endemicity (156). In addition, long-range airborne dust cloud Coccidioides
dispersal events triggered by natural disasters have caused significant regional cocci-
dioidomycosis outbreaks in the U.S. state of California (157). Kilometer-scale airborne
transmission occurred in the Los Angeles area following the 1994 Northridge earth-
quake, where strong aftershocks generated landslides on the slopes of the Santa
Susana Mountains, resulting in large, contaminated dust clouds (158–160). These
clouds were blown by ambient winds into the urban Simi Valley and Ventura County
areas, causing a coccidioidomycosis outbreak (203 total cases, 55 hospitalizations, and
3 fatalities).

Continental range (.500 km). Continental-scale airborne dispersion events, espe-
cially plant seed dispersions, have been well studied and influence the spread of inva-
sive species, metapopulation dynamics, and plant diversity (54, 100, 101, 161).
Continental-scale transport of common environmental bacterial species, either on nor-
mal atmospheric air currents or in association with dust cloud dispersions, has also
been well demonstrated (2, 162–164). As one example, bacterial communities from the
Saharan desert are known to travel airborne to high European Alpine lakes (165, 166).
Pathogenic bacteria have also been observed in the ambient atmosphere, including
plant, animal, and human pathogens (167–169). Furthermore, airborne transmission of
Neisseria meningitidis, a major cause of meningitis worldwide, is under investigation in
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the endemic Sahel region of North Africa as outbreaks occur most often in dry months
with frequent dust storms (164, 168).

Airborne continental-scale disease spread often proceeds as a series of sequential
long-range airborne transmission events over the landscape (saltatory transmission).
However, individual continental-scale airborne disease transmission events, i.e., a sin-
gle airborne plume transporting pathogens more than 500 km, are also documented in
the literature (98, 110, 170, 171). Most but not all of the existing examples are from ag-
ricultural biosafety studies where these events are termed “single-step” LDD pathogen
invasions (98). These types of events are thought to be rare and often associated with
extreme weather events or natural disasters (110, 157). However, routinely occurring,
single-step LDD events could be more frequent, although this possibility has not been
systematically investigated. For example, a sentinel LDD study of airborne plant-patho-
genic fungi (Erysiphe graminis f. sp. hordei [barley mildew] and Erysiphe graminis f. sp
tritici [wheat mildew]) demonstrated transmission over a distance of 650 km across the
North Sea from Great Britain to Scandinavia (171). Samples were obtained using dis-
ease-free receptor plant populations and compared to unexposed control plants, and
a multiyear series of samples was obtained in the regions with the highest-expected-
transmission probability.

A major weather-related single-step LDD event was the 2,000-km airborne disper-
sion of Asian soybean rust (Phakopsora pachyrhizi) across the Caribbean from north-
western South America to the United States during Hurricane Ivan (110). This 2004
event marked the invasion of Asian soybean rust into the North American continent.
The event was anticipated as the spread of Asian soybean rust from Brazil northward
in South America was being monitored and Brazil had lost a significant fraction of its
soybean production to this pathogen. Among other measures (and prior to the event
itself), predictive atmospheric dispersion modeling for potential airborne transport to
the United States during tropical cyclone seasons was conducted, and the U.S.
Department of Agriculture deployed disease forecasting systems and field tested a
detailed response plan for use in the event that soybean rust was identified (110).
Soybean rust was detected infesting soybean fields in Louisiana (as predicted) within 2
weeks after Hurricane Ivan had passed. Subsequently, Asian soybean rust has remained
endemic in many southern states, especially in the initial epidemic outbreak area (172).

A clear human disease example of single-plume continental-scale airborne disease
transmission is the 600-km dispersion of Coccidioides immitis spores in California, which
resulted in widespread coccidioidomycosis outbreaks (173). In this 1977 event, a 160-
km h21 windstorm scoured 15 cm of Coccidioides immitis-contaminated topsoil from
Kern County, located in the southernmost basin of California’s San Joaquin Valley, car-
rying a resulting dust cloud to an altitude of 1,500 m (see the JPEG image [890 by 690
pixels] at https://geochange.er.usgs.gov/sw/impacts/geology/dust/desertdust.jpeg).
The dust was transported northward and dispersed over an 87,000-km2 area (150, 170,
173, 174), burying freeways and shutting down interstate transportation. There were 3
immediate storm-related fatalities, and 3 firefighters died in a forest fire spread by the
strong winds. Sacramento, a low-endemicity area 500 km to the north, experienced a
large coccidioidomycosis outbreak (115 cases and 6 fatalities reported versus a back-
ground incidence of 0 to 6 cases per year). Overall, 15 California counties northward in
the dust cloud dispersion area reported a 10-fold increase in coccidioidomycosis cases,
and 9 counties reported lesser increases (173). This 1977 Coccidioides immitis disper-
sion, with a total of more than 379 reported cases, serves as a historical benchmark for
the potential magnitude of coccidioidomycosis cases from a significant dust storm
(170). Integrated coccidioidomycosis case surveillance and dust storm forecasting are
currently standard in U.S. areas of endemicity (175).

DISCUSSION

Historically, the importance of the airborne disease transmission pathway has been
well recognized (11, 176–178), but more recently, work in this area has not been
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prioritized. Prior reviewers have suggested that the motivation to understand the air-
borne infectious disease transmission pathway has waned over time due to (i) the
availability of antibiotic therapy and immunizations for key diseases of interest and (ii)
the difficulty in detecting infectious pathogens in airborne particles relative to water,
surfaces, or large-droplet sprays (179).

Regardless of the cause, the multiscale transmission of airborne disease is likely cur-
rently underappreciated, even though the cumulative body of literature across the sci-
entific disciplines is large. Our experience is that it is quite difficult to locate all perti-
nent papers in the medical and public health literature, even for a single disease. A
contributing cause may be the lack of standard indexing terms for airborne disease
transmission. As an example, the U.S. National Library of Medicine’s Medical Subjects
Headings (MESH) indexing system lacks MESH terms for airborne disease transmission.
For comparison, there are MESH terms for “fomite,” “waterborne diseases,” “vector-
borne diseases,” “sexually transmitted diseases,” and “foodborne diseases.” Currently,
MESH terms in use to code airborne transmission articles are generic ones such as “air
microbiology,” “respiratory tract infections/diseases,” and “inhalation exposure.” To
facilitate Internet searches in the future, we suggest that authors add the phrase “air-
borne disease transmission” or “airborne infection transmission” to article abstracts.

Most of the reports cited here are epidemiology studies where the airborne path-
way is the predominant means of disease transmission and where researchers have
excluded other disease transmission pathways, i.e., single-pathway outbreaks. There
are relatively few published reports documenting airborne transmission as a second-
ary, contributory cause of disease, although important examples exist (e.g., see referen-
ces 115, 119, and 180). For opportunistic pathogens, in which a disease can transmit
through multiple pathways, not investigating or reporting instances of secondary air-
borne disease transmission may serve to reduce the number of airborne disease
reports in the literature. Airborne transmission as a partial cause of disease outbreaks
may be common, and more attention to this topic is warranted in the literature.

Our knowledge of the infectious disease population impacts is primarily based on
surveillance systems that rely on reported, diagnosed cases. These systems are useful
for monitoring trends over time and for identifying disease outbreaks. However, they
can underreport population incidence and prevalence and so risk creating the impres-
sion that a particular disease is uncommon and lacks a significant population-level
impact. This impression could be a disincentive to disease-specific research and air-
borne transmission pathway research in general.

As an example, Q fever is thought to be uncommon; however, U.S. nationally repre-
sentative data show that 3% of the population have positive Q fever serology at any
one time, which corresponds to an estimated 6 million adults (181). Similarly,
Legionnaires’ disease pneumonias are believed to be 10 times more common than
what is currently being diagnosed (182). Notably, histoplasmosis, like coccidioidomyco-
sis, has clear potential for airborne disease transmission and is widely endemic across
the eastern, midwestern, and southern United States. We note that there have been no
literature reports of longer-range airborne histoplasmosis outbreaks in the United
States since the 1980s.

CONCLUSIONS

Airborne transmission of infectious disease has been demonstrated in multiple, in-
dependently conducted field experiments and observational epidemiology studies
across distances ranging from meters to continental in scale. Furthermore, multiscale
airborne disease transmission has been demonstrated for viruses, bacteria, and fungi
across a wide range of relevant scientific disciplines, including plant biology, agricul-
tural and veterinary biosafety, medicine, and public health. While historically, the im-
portance of the airborne disease transmission pathway has been well recognized, this
area has not been prioritized until the recent COVID-19 outbreak. Consequently, the
scientific literature may underestimate the prevalence, importance, and key features of
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airborne disease transmission. Greater awareness of the potential for airborne disease
transmission and dissemination of methodological guidelines for surveillance studies
and disease outbreak investigations could help address this situation.
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