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Abstract

Objectives

Low response rates in epidemiologic research potentially lead to the recruitment of a non-

representative sample of controls in case-control studies. Problems in the unbiased estima-

tion of odds ratios arise when characteristics causing the probability of participation are

associated with exposure and outcome. This is a specific setting of selection bias and a real-

istic hazard in many case-control studies. This paper formally describes the problem and

shows its potential extent, reviews existing approaches for bias adjustment applicable under

certain conditions, compares and applies them.

Methods

We focus on two scenarios: a characteristic C causing differential participation of controls is

linked to the outcome through its association with risk factor E (scenario I), and C is addition-

ally a genuine risk factor itself (scenario II). We further assume external data sources are

available which provide an unbiased estimate of C in the underlying population. Given these

scenarios, we (i) review available approaches and their performance in the setting of bias

due to differential participation; (ii) describe two existing approaches to correct for the bias

in both scenarios in more detail; (iii) present the magnitude of the resulting bias by simulation

if the selection of a non-representative sample is ignored; and (iv) demonstrate the ap-

proaches’ application via data from a case-control study on stroke.

Findings

The bias of the effect measure for variable E in scenario I and C in scenario II can be large and

should therefore be adjusted for in any analysis. It is positively associated with the difference in

response rates between groups of the characteristic causing differential participation, and

inversely associated with the total response rate in the controls. Adjustment in a standard logis-

tic regression framework is possible in both scenarios if the population distribution of the char-

acteristic causing differential participation is known or can be approximated well.
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Introduction

Response rates

The advance in epidemiologic research depends on the willingness of contacted individuals to

participate voluntarily in research. However, over the past decades this willingness to respond

to research inquiries has substantially decreased,[1] which is reported as the proportion of

responding out of all contacted individuals and most commonly referred to as the ‘response

rate’. This also rendered it more difficult to acquire a random sample of controls free of a spe-

cific disease from the general population to match or compare to cases with the disease. This is

the established approach in case-control studies, which is in turn still the currently most often

used study design.

We know that this decrease in response rates has not necessarily been uniform over all

groups of the population. Women are more likely than men to respond to research inquiries,

just as individuals with a higher socioeconomic status, a higher education, and a current

employment. On the other hand, there is no such clear trend for age and ethnicity.[1]

Non-representative selection of controls

As in any empirical research, there are two main sources of error in epidemiologic studies: ran-

dom error and systematic error. Whereas the first can be quantified using confidence intervals

and reduces with increasing sample size, the systematic error is often overlooked.[2]

A specific type of systematic error is selection bias, which generally means that the associa-

tion between outcome and exposure differs between selected individuals and all contacted or

eligible individuals.[3] In epidemiology, selection bias has many labels depending on the set-

ting, e.g. healthy-worker or non-response bias. However, all of them refer to the situation that

the selection process of participants results in a non-representative sample with regard to the

population of interest, and Hernan et al [3] show that all of them have the same underlying

structure, which is the conditioning on a common effect.

We will further refer to the selection bias setting which we focus on, with differential partici-

pation bias. This term best describes the problem in research we want to address, which is the

non-uniform willingness to participate as controls in a case-control study. The terms differential

and non-differential are often used in the context of misclassification. In our context we use the

term non-differential participation to refer to situations where the probability of participation is

independent of covariates, and differential participation where the probability of participation

differs between strata, defined by one or more, measured or unmeasured, covariates.

Issues for subsequent data analyses arise when the population characteristic causing the

(differential) participation of controls is in turn linked to the outcome of main interest of a

study. This can either be the case when this characteristic is associated with a risk factor, which

is an example of selection bias only, or when the same characteristic is a genuine risk factor,

which is an example of both selection bias and confounding.[3] Without controlling for this

bias, the effect measures’ validity might be threatened.

Adjustment by analysis

Knowledge about the potential presence of differential participation can help to reduce bias by

design. In the setting of an epidemiologic study this can be done in two ways. First, knowing

the true distribution of the characteristic causing differential participation, one can over-sam-

ple those for which the response rate is lower until the population distribution has been

obtained. Second, if the true distribution is not known but a differential participation is

assumed, one could ask those who refuse to participate a follow-up question about this specific
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characteristic only–to acquire information on the distribution, such that the sample can after-

wards be weighted accordingly.[4] However, these approaches by design require researchers to

know a priori which characteristic will cause differential participation in their specific field.

Moreover they might need assumptions regarding this characteristic’s distribution, are limited

to focus on one or only few such characteristics, and might require that participants answer to

short follow-up questions, which could also be refused.

Therefore the approaches we focus on are based on the more common setting where an

oversampling by design has not been performed, but valid external data sources are available

to provide information on the true distribution of the characteristic causing differential partic-

ipation. Thus it is still required that researchers have a notion of which such characteristics are

potentially relevant in their field. However, the influence of several characteristics could be

evaluated a posteriori, without implications to design, and therefore possibly less cost-inten-

sive–given external data sources are available. A good example is a study focusing on mental

health, where unemployment is considered a risk factor,[5] which is in turn associated with a

lower participation rate.[1] In this case answering the sensitive follow-up question to estimate

the population distribution of unemployment is likely to be refused, and it might not be the

only characteristic causing differential participation, but valid external data is available.

The approaches we review do not employ probabilistic modelling of the selection bias (see

e.g. Lash, Fox and Fink [2] for an introduction to probabilistic bias analysis), and are aimed at

the application in a setting where a multidimensional systematic bias adjustment is necessary,

i.e. where there are selection bias and confounding present at the same time. Lash, Fox and

Fink [2] propose an adjustment approach for selection bias based on a similar approach, but in

a setting where the exposure of interest causes differential participation and with known and

probabilistically modelled selection probabilities for disease-exposure status, i.e. they weight

the crude odds ratio (OR) based on the OR for the selection, but not individual observations.

Although it is not common in practice to do so, one could include all contacted controls in the

analyses, and therefore view the problem as a special case of missing data. However, this is not

a useful option as we would then generally, unless implemented otherwise by design, have no

information about them. In this setting, imputation techniques such as multiple imputation

are not an option, as they need to draw from information in non-missing variables. A similar

problem arises with inverse probability weighting if it is used to model the probability of miss-

ingness of each individual.[6]

Given the assumption that valid external data sources are available to provide information

on the distribution of the characteristic causing differential participation, we first summarize

available approaches and review their performance in two scenarios of this specific setting of

bias due to differential participation, and further describe in more detail those approaches

which are applicable in both scenarios and easily implementable in multivariable models. Sec-

ond, the magnitude of the resulting bias on the targeted risk measure, the OR for case-control

studies, is demonstrated under realistic scenarios. Finally, as an illustrative data example we

use data from a case-control study on stroke where the response rate depended on an educa-

tional variable for which reference data was available.

Materials and methods

Problem statement

We denote the presence of a disease with D = 1 (e.g. stroke), and its absence with D = 0, and

consider two binary characteristics–the exposure E (e.g. current smoking) and the covariate C
(e.g. middle or low education), where the data can be presented in a 2x2 table D x E, stratified

by levels of C (Table 1).
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We further consider two simple scenarios in both of which C determines the response rate,

meaning that in different strata of C the response rates differ (Fig 1). In the first scenario, C is

assumed to be linked to D only through its association with E, i.e. it is not a risk factor for D
and therefore not a confounder. In this scenario, as C is not a risk factor for D, it is not needed

in the analysis of the association between E and D. In the second scenario, we assume that C is

a risk factor for D and associated with E, i.e. C is a potential confounder. It must be included in

the model in order to obtain an unbiased estimate of the OR of E (ORE).

For both scenarios, we assume that (i) E is a risk factor without effect modification by C, i.e.

ORE|C = 1 = (a1 d1) / (b1 c1) = ORE|C = 0 = (a2 d2) / (b2 c2)> 1, and (ii) C and E are positively

associated.

The crude OR of E is ORE = (a d) / (b c) = ((a1+ a2)(d1+ d2)) / ((b1+ b2)(c1+ c2)). We now

assume a differential participation in controls by levels of C, indicated by the arrow from C to

S in Fig 1. As a1, a2, c1, c2 relate to the case of D = 1, assuming differential participation in the

controls, the only change is in the term (d1+ d2) / (b1+ b2). Let p1 be the response rate in con-

trols when C = 1, p0 the response rate when C = 0, and p1 < p0. Then the relevant term changes

accordingly and it follows (p1 d1 + p0 d2) / (p1 b1 + p0 b2)> (d1 +d2) / (b1 + b2), i.e. ORE

increases and is biased. Given the example of a crude ORE of 2.25, a differential response rate

p1 of 0.2 and p0 of 0.8 results in a biased ORE of 2.70 (see S1 Table for this numerical example).

Review of available approaches for bias adjustment due to differential

participation

There are different approaches to adjust for the differential participation bias in the OR esti-

mates, where their applicability depends on the specific setting at hand.

Adjusting the ORE estimate. ORE can be adjusted either

Table 1. 2x2 table disease D x exposure E, by levels of covariate C.

C = 1 C = 0
D = 1 D = 0 D = 1 D = 0

E = 1 a1 b1 a2 b2

E = 0 c1 d1 c2 d2

https://doi.org/10.1371/journal.pone.0191327.t001

Fig 1. General graphical representation of Scenarios I & II. In both scenarios covariate C determines the response rate of the controls (selection for

participation in study S); Scenario I: Covariate C is no confounder for the association of interest between exposure E and outcomeD; Scenario II: C is a

confounder.

https://doi.org/10.1371/journal.pone.0191327.g001
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(i) by the inclusion of the variable C as a covariate in a logistic regression model,[7] or

(ii) by using a stratified analysis by strata of C (e.g. conditional logistic regression condition-

ing on C,[8] Cochran-Mantel-Haenszel-statistic[9, 10]).

It should be noted here that models including C as a covariate are fundamentally different

from models not including C, and that these different models are not simply comparable. Yet,

we still included the model with C as a covariate in scenario I for illustrative reasons. More-

over, if valid reference data is available for the distribution of C, the over- or underrepresenta-

tion by strata of C can also be incorporated

(iii) by the use of an appropriate offset term in logistic regression, or

(iv) by weighting observations in logistic regression,

as summarized in Table 2. It has to be emphasized here that the use of weights or an offset

might aggravate the problem of heteroscedasticity, and therefore valid inferences for these

models require a robust estimation of the standard error.

Adjusting the ORC estimate. In both scenarios, the simple inclusion of C in the model

will lead to a biased estimate of ORC. To also derive an unbiased estimate of ORC, we have to

make use of reference data, as suggested in approaches (iii) and (iv).

Both of these two approaches require external data sources, but only they are applicable in

both scenarios and can be used to derive both estimates, ORE and ORC, and are therefore intro-

duced in more detail subsequently. However as the other approaches also yield valid results for

ORE, they will be further included in simulations and the study example in scenario I.

Adjustment by weights. If we knew the correct values for response rates given C = 1 and

C = 0, i.e. p1 and p0, we could adjust the relevant quantities with the inverse terms 1/p1 and

1/p0, respectively, which can also be referred to as weighting the data affected by differential

participation.

If these quantities are not known, they can be estimated given knowledge about the true dis-

tribution of C in the general (assumed healthy) population via reference data. We compare the

proportion of C in the sample of controls to its proportion in the population, i.e. define two

scalars as fractions of proportions: bp1 = (sample proportion C = 1) / (population proportion of

C = 1), and bp0 = (1 –sample proportion C = 1) / (1 –population proportion of C = 1).

Table 2. Overview models and adjustment approaches for Scenarios I & II.

Scenario Adjustment Model Unbiased estimate of

ORE ORC

I None (basic model) logit(Y = 1|E) = α + β1 e no -

Variable inclusion logit(Y = 1|E,C) = α + β1 e + β2 c yes no

Stratification logit(Y = 1|E) = α + β1C0 e

logit(Y = 1|E) = α + β1C1 e

combine β1C0 and β1C1, e.g. with Cochran-Mantel-Haenszel-statistic

yes -

Weightsa logit(Y = 1|E) = α + β1e using weighted observations yes -

Offsetb logit(Y = 1|E) = α + offset + β1 e yes -

II None (basic model) logit(Y = 1|E,C) = α + β1 e + β2 c yes no

Weightsa logit(Y = 1|E,C) = α + β1 e + β2 c using weighted observations yes yes

Offsetb logit(Y = 1|E,C) = α + offset + β1 e + β2 c yes yes

a see paragraph Adjustment by weights
b see paragraph Adjustment by offset

https://doi.org/10.1371/journal.pone.0191327.t002
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These proportions indicate whether controls with C = 1 or C = 0 are over- or underrepre-

sented in the observed sample, and to what extent. In the case of a logistic regression model,

we would then weight each observation i as follows:

weighti ¼

ð1= bp1Þ; if i is a control with C ¼ 1

ð1= bp0Þ; if i is a control with C ¼ 0

1; if i is a case;

8
><

>:

such that a case has the standard weight of 1, a control with its level of C being underrepresented

obtains a weight> 1, and vice versa. Scott and Wild [11] discuss introducing individual weights in

maximum likelihood estimation. This idea corresponds to the idea of inverse probability weight-

ing to correct for unequal sampling fractions,[6] like the Horvitz-Thompson estimate.[12] The

weights proposed above can be rewritten as 1
PðC¼ijSÞ
PðC¼iÞ

, where P(C = i|S) is the sample proportion of C =

i, and P(C = i) is the population proportion of C = i, given by external data. Due to Bayes theorem

these weights are equivalent to 1
PðSjC¼iÞ
PðSÞ

. As the sampling fraction P(S) is a constant, this expression is

proportional to the Horvitz-Thompson estimate, where weights are estimated by 1

PðSjC¼iÞ.

Adjustment by offset. Breslow and Cain [13] and Cain and Breslow [14] showed that the

introduction of an offset to the logistic regression model can account for bias. Although they

applied this approach to a different setting, the fundamental problem is mathematically equiv-

alent. They assume that the risk factor of main interest E is sampled in the total study popula-

tion in a first stage, and the potential confounder C is sampled only in a subset of the non-

diseased, with predefined selection probabilities for each category of E (choice-based sam-

pling), such that a complete case analysis would lead to a biased estimate of the ORE. They

showed that an unbiased OR estimate for E can be obtained if the offset is subsequently defined

as the logarithm of the ratio of the selection probabilities in the strata. This situation is equiva-

lent to the present situation where C is known for the total population and E is known for a

sample of the controls which is not representative for C, where we define the offset for each

observation i as follows:

of f seti ¼
ln ðbp0=bp1Þ; if C ¼ 1

0; otherwise;

(

where bp0=bp1 is the OR of C for controls vs. population.

Data

Simulation. In order to demonstrate the magnitude of the resulting bias if the differential

response is ignored, and to illustrate the performance of the mentioned approaches for adjust-

ment, we simulate a case-control study.

In a first simulation step, we simulate a large cohort with N = 3,000,000 individuals under

specific assumptions for the binary variables C, E, and D (Table 3) for both previously intro-

duced scenarios (Fig 1). In a second simulation step, based on assumptions regarding partici-

pation probabilities by strata of C, we set certain proportions of the controls missing, (e.g. 40%

if C = 0 and 70% if C = 1) and sample 1,000 individuals from the diseased (cases) and 2,000

from the non-diseased (controls). We replicate this step 1,000 times and calculate the OR esti-

mate according to the various approaches.

In all analyses, we consider the OR estimates for C and E derived from logistic regression

analysis as the target parameters. For graphic representation of the simulation results we use

10% as an arbitrary threshold for substantial difference between true and biased effect.
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For all analyses the statistical software R was used,[15] the R package epiR for the Cochran-

Mantel-Haenszel OR estimate,[16] the packages lmtest [17] and sandwich [18, 19] for robust

estimates of the standard error.

Study example. The application of this approach is demonstrated via data from the GEN-

ESIS study (Inflammatory, Genetic and Socio-economic Determinants of Ischemic Stroke and

their Interdependence), a case-control study on stroke. The study was approved by the ethics

committee of the Landesärztekammer Rheinland-Pfalz (837.333.05(4991)). It was carried out

in Ludwigshafen, Germany, and includes data on 470 stroke patients and 809 age- and sex fre-

quency-matched controls. One main hypothesis of this study was that adverse socioeconomic

conditions in childhood (living, familial, material, and self-estimated financial conditions dur-

ing childhood up to age 14), adolescence, and adulthood each independently contribute to the

risk of first-ever ischemic stroke.[20] As an example, we will focus on the results for the child-

hood socioeconomic risk score (corresponding to E in Fig 1). The socioeconomic risk score in

childhood ranged from 0 (low) to 10 (high) and was divided into three levels (low, middle,

high). The controls were randomly selected from the total population of Ludwigshafen. About

50% of the initially contacted individuals were recruited, which raised awareness of potential

response bias in the controls, known to often depend on the educational level (corresponding

to C in Fig 1), which is in turn positively associated with the socioeconomic score of a respon-

dent (Fig 2).

Table 3. Simulation parameters for Scenario I & II of the association between outcome D, exposure E, and covari-

ate C.

Scenario I Scenario II

Prevalence of C P(C = 1) = 0.5

Prevalence of E conditioned on C P(E = 1 | C = 0) = 0.2

P(E = 1 | C = 1) = 0.4

! P(E) = 0.3

Prevalence of D conditioned on E and C P(D = 1|E = 0, C) = 0.05

P(D = 1|E = 1, C) = 0.1

P(D = 1|E = 0, C = 0) = 0.05

P(D = 1|E = 0, C = 1) = 0.1

P(D = 1|E = 1, C = 0) = 0.1

P(D = 1|E = 1, C = 1) = 0.2

Prevalence of D 6.5% 10.1%

Crude odds ratio of E 2.1 2.2

Crude odds ratio of C 1.2 2.2

https://doi.org/10.1371/journal.pone.0191327.t003

Fig 2. Graphical representation of Scenarios I & II for the study example. In both scenarios the covariate school level determines the response rate

of the controls (selection for participation in study S); Scenario I: School level is no confounder for the association of interest between childhood

socioeconomic risk score and stroke; Scenario II: School level is a confounder.

https://doi.org/10.1371/journal.pone.0191327.g002
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We obtained reference data for the distribution of highest obtained educational level in the

controls, by age and sex groups for the general population from the statistical office of the city

of Ludwigshafen (Stadtverwaltung Ludwigshafen) for the years 1970 and 1987 (Table 4).

Results

Simulation

Scenario I. The distribution of the resulting crude and adjusted ORE estimates with all

proposed approaches based on various settings of participation probability are displayed as

boxplots (Fig 3). The true OR estimate, i.e. given a probability of participation of 100% in both

groups of C, is indicated with the black line. This estimate is the same for all settings of non-

differential participation, indicated with the first boxplot, respectively (difference: 0%).

The bias of the crude OR is larger, the larger the differences between response rates in the

strata of C and the lower the mean response rate. We observe a positive bias, as only settings

are plotted where the high risk group (C = 1) is assumed to have a lower response. Assuming

10% from the true OR as an acceptable deviation (indicated with dashed lines), the biased OR

estimates do not exceed these limits for minor differences in response rates and a rather high

total response rate. However, in the majority of the displayed settings, the crude OR estimates

lie beyond this range.

As expected, all proposed approaches for adjustment give an unbiased estimate of the ORE.

Small differences in the variability of the results are visible, where especially the estimate

adjusted with weights displays a higher variability (see S1 File for the R script).

Additional simulations were run assuming different ORs in this scenario, showing that the

size of the effect does not influence the size of the bias (S1 Fig). We furthermore ran analyses

for varying the matching rate for cases and controls, from cases:controls = 1:1 to 1:4, where we

see that this matching rate does not impact the bias in the analysis, but only the variability in

the estimate (S2 Fig).

Scenario II. Assuming that both E and C are risk factors, Fig 4 presents boxplots of the

expected ORC, based on logistic regression models including E and C as independent variables.

The figure also displays the offset and weight adjusted ORC estimates.

The bias for non-differential participation in this scenario is again 0 in expectation and

again positive for all settings of differential participation. The vast majority of biased OR esti-

mates due to differential participation exceed the 10% deviation limits, especially clearly

assuming a low total participation rate (Fig 4). The bias due to differential participation in the

Table 4. Study data of the GENESIS study and reference data for the general population of ludwigshafen by sex and age.

Sex Age Study Data Ludwigshafen Population

School Level % School Level %

Low Middle High Low Middle High

Female <60 42.5 33.3 24.1 59.0 25.1 15.9

61–70 73.9 21.6 4.6 72.8 18.0 9.2

71+ 68.7 22.1 9.2 78.2 15.1 6.7

Male <60 50.6 25.9 23.5 58.5 17.7 23.8

61–70 64.5 20.7 14.8 73.2 12.9 13.9

71+ 68.1 17.0 14.9 79.0 10.9 10.2

Source: Statistical Office (Stadtverwaltung) Ludwigshafen: Evaluation of the population census 1970 and 1987. Highest achieved school education (1970) and highest

professional training (1987) by age and sex groups.

https://doi.org/10.1371/journal.pone.0191327.t004
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ORC estimate is also a lot more distinct compared to the bias in the ORE in scenario I. The

results demonstrate that unbiased effect estimates can be calculated even if C is a confounder

in the association of E and D (see S2 File for the R script).

Study example

The risk factor of main interest E in the example of the GENESIS study is the childhood socio-

economic risk score, and the characteristic C assumed to have caused differential participation

is educational achievement measured with the highest school grade, which might additionally

be a risk factor. The childhood socioeconomic risk score is positively associated with school

level (Kendall’s tau = 0.29 and 0.31 in cases and controls, respectively), and as such we expect

an overestimation of the ORs in both scenarios if differential participation is ignored (the min-

imal anonymized dataset is provided with figshare.com: https://figshare.com/articles/

GENESIS_ReplicationDataset_csv/5580091; see S3 File for the R script reproducing Table 5).

Scenario I. All four approaches can be used to obtain an unbiased estimate of the ORE in

scenario I. Weights and offsets are derived from the reference data for each school level-age-

sex-group (Table 4). As an example, 24.1% of women under 60 obtained a high school level in

our study data, and only 15.9% in the reference data, the weight for female controls under 60

Fig 3. Simulations Scenario I for different total response rates and differences in response rates by strata of C.

Crude and differential participation adjusted odds ratios (OR) of exposure E (y-axis, logarithmic scale) with regard to

the diseaseD (true OR = 2.1); Solid lines indicate unbiased OR; dashed lines indicate 10% margins of unbiased OR;

Simulations based on scenario I (C is a covariate but no confounder, C determines the response rate), different total

response rates (A: 75%, B: 50%, C: 25%), and differences in response rates by strata of C (x-axis, no difference means

same response rate in each strata of C) (1000 cases, 2000 controls, 1000 simulations); The larger the difference in

response rates by strata of C and the lower the mean response rate, the higher the bias in the crude OR.

https://doi.org/10.1371/journal.pone.0191327.g003
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Fig 4. Simulations Scenario II for different total response rates and differences in response rates by strata of C.

Crude and differential participation adjusted odds ratios (OR) of covariate C (y-axis, logarithmic scale) with regard to

the diseaseD (true OR = 2.2); Solid lines indicate unbiased OR; dashed lines indicate 10% margins of unbiased OR;

Simulations based on scenario II (C is a covariate and a confounder, C determines the response rate), different total

response rates (A: 75%, B: 50%, C: 25%), and differences in response rates by strata of C (x-axis, no difference means

same response rate in each strata of C) (1000 cases, 2000 controls, 1000 simulations); The larger the difference in

response rates by strata of C and the lower the mean response rate, the higher the bias in the crude OR.

https://doi.org/10.1371/journal.pone.0191327.g004

Table 5. Odds ratio estimates and 95% confidence intervals for stroke risk factors of main interest in Scenario I & II. Scenario I: Only confounding adjusted, i.e.

adjustment for: two-year age groups and sex; Scenario II: Confounding and differential participation adjusted; Analyses based on logistic regressions (n = 1279,

events = 470).

Scenario Variables Adjustment Approach

None (basic model) Variable inclusion Stratification Weightsa Offseta

I Risk Score Childhoodb: Low 1 1 1 1 1

Middle 2.20(1.65–2.95) 1.92(1.42–2.62) 1.92(1.41–2.61) 1.93(1.43–2.62) 1.89(1.39–2.57)

High 2.95(2.14–4.09) 2.55(1.82–3.59) 2.54(1.81–3.57) 2.61(1.87–3.64) 2.61(1.86–3.66)

II Risk Score Childhoodb: Low 1 - - 1 1

Middle 1.92(1.42–2.62) 1.93(1.41–2.64) 1.88(1.37–2.58)

High 2.55(1.82–3.59) 2.61(1.85–3.68) 2.59(1.83–3.68)

School Level: High 1 - - 1 1

Middle 0.62(0.39–0.99) 0.75(0.46–1.21) 0.76(0.47–1.24)

Low 1.24(0.85–1.84) 0.89(0.59–1.34) 0.92(0.61–1.38)

a based on reference data from the Statistical Office (Stadtverwaltung) Ludwigshafen (Table 4)
b as defined in the original publication by Becher et al [20]: categories based on classifications of the summed risk scores, based on the distribution in controls; The score

is based on information on the parental professions, living conditions, and estimated family income in childhood.

https://doi.org/10.1371/journal.pone.0191327.t005

Differential participation bias in case-control studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0191327 January 24, 2018 10 / 14

https://doi.org/10.1371/journal.pone.0191327.g004
https://doi.org/10.1371/journal.pone.0191327.t005
https://doi.org/10.1371/journal.pone.0191327


with a high school level is therefore 1/(24.1/15.9) = 0.6598, smaller than 1 due to their overrep-

resentation in the controls.

All results are given in the upper part of Table 5. In this setting, where only one risk factor

is of interest and we additionally control for confounding by age and sex only, all approaches

yield highly similar results for ORE. The similarity between those estimates based on reference

data and those of the other approaches speaks in favor of the reference data’s validity. The fig-

ures confirm our expectation of ORE estimates decreasing towards 1, given the adjustment,

where both ORE estimates decrease by about 12 to 14%.

Scenario II. If the school level C itself is assumed to be a risk factor, we would like to

obtain an unbiased estimate of ORE and ORC simultaneously, and therefore adjust with

weights or an offset. Results are shown in the lower part of Table 5. The ORE estimate is unbi-

ased in expectation in all presented settings, even without further adjustment. However in this

scenario we assume the ORC being biased, as it also causes differential participation. We see

that the crude ORC estimate suggests a significant protective effect of a middle school level

compared to a high school level, and an elevated risk for low school level, although not signifi-

cant. Again, the weights and offset adjustment yield highly similar results, in a way that all OR

estimates change towards 1 (for the second OR even below 1).

Discussion

We showed that several approaches can be applied to derive unbiased effect measures in a spe-

cific setting of selection bias, where the response rate in controls depends on covariates. In

cases where these covariates also act as independent risk factors, we can still derive their unbi-

ased effect measures, but need reference data to be available as a valid estimate of the covari-

ates’ distribution in the underlying population. The comparison of the population distribution

to the study data’s distribution is used to include weights or an offset term in a standard logis-

tic regression framework.

Considering two scenarios of the situation that the characteristic causing differential partic-

ipation is in turn linked to the outcome of main interest of a study–either by being correlated

with a risk factor, or as a genuine risk factor itself, the extent of the bias in the OR estimation

was investigated with simulations. These showed that the bias in the OR estimates is positively

associated with the difference in response rates between groups of the characteristic causing

participation, and inversely associated with the total response rate in the controls. The bias of

the effect measure in both scenarios can be quite large. For example, in a study with a total

response of 50% and a difference of 20% in response rates between groups of the characteristic

causing participation, where this characteristic is itself a risk factor (scenario II), the OR was

highly overestimated.

Both scenarios are realistic in many case-control study settings. The sex of the participating

controls is a demonstrable example for the second scenario–we know from research on

response rates that women are more likely to participate as controls in a study,[1] and that sex

is often associated with the probability of disease occurrence, such as stroke, which is more

likely to occur in men.[21] The effect estimate for sex will therefore be biased in a standard

analysis. If, as common in practice, cases and controls are matched according to the variable

causing differential participation, i.e. sex, this bias will not arise, but also no effect estimate for

this variable can be derived. Many other plausible examples can be given for different fields of

research. The current socioeconomic status has for example been shown to be independently

associated with both stroke incidence and mortality,[20, 22] and may be a driving factor for

differential participation;[1] Unemployment is an independent risk factor for mental health,

[5] and at the same time associated with a lower participation in scientific studies;[1] Finally,
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marital status is associated with a lower cancer mortality,[23] and married individuals are

more likely to respond to research inquiries.[1]

Generalizations

We primarily considered here the simple case with two binary variables E and C, however, the

approach can be extended to the more general case with any k exposures E1, . . ., Ek and any

categorical variable for C, as shown here in the data example. It is furthermore not limited to a

differential participation in the controls, the same framework can be applied in the presence of

differential participation in the cases, which may only be a less common issue in the setting of

a case-control study.

Loosening the assumption of valid reference data, one could either use at least an educated

guess or a range of educated guesses, or use probability distribution assumptions for the refer-

ence data to make a probabilistic bias analysis.

Limitations

Although the approach is easily extended to variables with more than two categories, the case

of continuous variables needs further investigation, but the same approach is conceivable.

Independent of the analytical method, the use of reference data can be problematic, as the

assumption of the data’s validity might not hold. In the study example, we make use of refer-

ence data which showed some degree of validity as the results from all approaches in scenario I

were highly similar. However potential issues with the validity of the reference data persist, but

were not further investigated in this study.

Adjustment with weights or an offset has two further disadvantages. First, the variance of

the OR estimates increases taking the adjustment into account, even more so given a high vari-

ation in weights/offset. Second, the approaches are sensitive to outliers, especially in settings

with small numbers of observations for certain strata.[24, 25]

Conclusions

Our study aimed to improve the analysis of epidemiologic studies by pointing out a potential

source of bias and its possible extent, and to advocate the implementation of approaches for

bias adjustment. The importance of doing so was previously emphasized by Lash et al.[26]

Therefore we illustrated the extent of the bias introduced by differential participation in a

case-control setting, and reviewed existing approaches for bias adjustment, which are easily

implementable in standard statistical software in the common setting of multivariable models,

where some depend on the assumption of valid reference data being available.

Supporting information

S1 Table. Numerical example of 2x2 table disease D x exposure E, by levels of covariate C.

(DOCX)

S1 Fig. Simulations Scenario I based on different odds ratios. Crude and differential partici-

pation adjusted odds ratios (OR) of exposure E (y-axis, logarithmic scale) with regard to the

disease D (true OR = 1.3, 2.1, 3.4); Simulations based on Scenario I (C is a covariate but no

confounder, C determines the response rate), total response rate of 40%, and difference in

response rates of 40% by strata of C (x-axis) (n = 1000 cases, 2000 controls, 1000 simulations);

The bias in the crude OR is not affected by the effect size.

(TIFF)
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S2 Fig. Simulations Scenario I based on different matching rates cases:Controls. Crude and

differential participation adjusted odds ratios (OR) of exposure E (y-axis, logarithmic scale)

with regard to the disease D (true OR = 1.3, 2.1, 3.4) based on different matching rates cases:

controls (1:1, 1:2, 1:3, 1:4); Simulations based on Scenario I (C is a covariate but no con-

founder, C determines the response rate), total response rate of 40%, and difference in

response rates of 40% by strata of C (x-axis) (n = 1000 cases, 1000 simulations); The higher the

number of controls, the lower the variation in the estimate, the bias in the crude OR is not

affected.

(TIFF)

S1 File. R Script simulation code for differential response bias in Scenario I.

(R)

S2 File. R Script simulation code for differential response bias in Scenario II.

(R)

S3 File. R Script based on GENESIS study replication dataset for Table 5.

(R)
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